Star-Based a Posteriori Error Estimates for Elliptic Problems

نویسندگان

  • Boujemâa Achchab
  • Abdellatif Agouzal
  • N. Debit
  • Khalid Bouihat
چکیده

We give an a posteriori error estimator for nonconforming finite element approximations of diffusionreaction and Stokes problems, which relies on the solution of local problems on stars. It is proved to be equivalent to the energy error up to a data oscillation, without requiring Helmholtz decomposition of the error nor saturation assumption. Numerical experiments illustrate the good behavior and efficiency of this estimator for generic elliptic problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension

‎In this paper‎, ‎we study spectral element approximation for a constrained‎ ‎optimal control problem in one dimension‎. ‎The equivalent a posteriori error estimators are derived for‎ ‎the control‎, ‎the state and the adjoint state approximation‎. ‎Such estimators can be used to‎ ‎construct adaptive spectral elements for the control problems.

متن کامل

Residual-based a posteriori error estimates for hp finite element solutions of semilinear Neumann boundary optimal control problems

In this paper, we investigate residual-based a posteriori error estimates for the hp finite element approximation of semilinear Neumann boundary elliptic optimal control problems. By using the hp finite element approximation for both the state and the co-state and the hp discontinuous Galerkin finite element approximation for the control, we derive a posteriori error bounds in L2-H1 norms for t...

متن کامل

A RESIDUAL–BASED POSTERIORI ERROR ESTIMATES FOR hp FINITE ELEMENT SOLUTIONS OF GENERAL BILINEAR OPTIMAL CONTROL PROBLEMS

In this paper, we investigate a residual-based posteriori error estimates for the hp finite element approximation of general optimal control problems governed by bilinear elliptic equations. By using the hp discontinuous Galerkin finite element approximation for the control and the hp finite element approximation for both the state and the co-state, we derive a posteriori upper error bounds for...

متن کامل

Functional a Posteriori Error Estimates for Discontinuous Galerkin Approximations of Elliptic Problems

In this paper, we develop functional a posteriori error estimates for DG approximations of elliptic boundary-value problems. These estimates are based on a certain projection of DG approximations to the respective energy space and functional a posteriori estimates for conforming approximations (see [30, 31]). On these grounds we derive two-sided guaranteed and computable bounds for the errors i...

متن کامل

A Posteriori Error Estimates for Parabolic Problems via Elliptic Reconstruction and Duality

We use the elliptic reconstruction technique in combination with a duality approach to prove a posteriori error estimates for fully discrete backward Euler scheme for linear parabolic equations. As an application, we combine our result with the residual based estimators from the a posteriori estimation for elliptic problems to derive space-error estimators and thus a fully practical version of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 60  شماره 

صفحات  -

تاریخ انتشار 2014